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M     ABSTRACT 

This paper describes a procedure for determining if constrained 
transportation problems (I.e., transportation problems with additional 
linear constraints) can be transformed into equivalent pure transportation 
problems by a linear transformation involving the node constraints and 
the extra constraints. Our results extend procedures for problems In 
which the extra constraints consist of bounding certain partial sums of 
variables. 
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1.0    INTRODUCTION 

The classical transportation problem is well known for its widespread 

applicability and for the facility with which it can be solved.   Many prc- 

cedures have been developed for refomtulating disparate linear prograiming 

prublanu as transportation problans to take advantage of the ocmputational 

efficiency inherent in the specializad transportation algorithn [2,3,8,10]. 

We generalize the concepts of an earlier paper [6]  to shew how constrained 

transportation problems  (i.e., transportation problems with additional 

linear constraints) can be transformed into pure transportation problems. 

Our procedure determines if an arbitrary extra linear constraint can be 

transformed into an equivalent bounded partial sun of variables involving a 

single node constraint.    If this is possible the procedure gives the linear 

transformation that yields the equivalent constraint.    This extends the work of 

Wagner [9], Manne  [4,p.  382], and Oiames  [1] who have shown how transportation 

problems with these bounded partial sums can be reformulated into pure trans- 

portation problems 

It is conjectured that our transformation requires oonputational effort on 

the same order as that required to find an initial basic solution by Vogel's 

Approximation Method.    Since computational results indicate that specialized 

transportation codes can solve transportation problems at least 150 times 

faster than general purpose linear programming codes  [5], our results make it 

possible to solve constrained transportation problems of the specified class with 

substantially greater efficiency than by a general purpose algorithn. 

2.0   PROBIiM STÄTEMtM', MATHEMATICAL DEVELOPMENT, AND AN EXAMPLE 

A transportation problem with one additional extra constraint ( a 

singularly constrained transportation problan) can be stated mathanatically 

■m»—«mmMiiinnii i      iiSSi        IIIII I i i •-        Mtimmmm 
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as follows: 

Minimize 

subject to 

L        z      cij xij 
i.M      jeN J      J 

Z     x^ = a^   UM 
JeN 

E      X;,   = b.,    jeN 
icM U      WJ 

E        E      PijXij = d 
icM   jeN       J   J 

Xij > 0        ,if.M, jeN 

where M = {1,2,...,m}, N ?{l,2,...n},  E ai = E b^ In detached coefficient 
icM jeN    J 

form the singularly constrained transportation problem appears as indicated in 

Table 1.   The coefficients (p-jj) of the extra constraint appear below the familiar 

echelon-diagonal structure of ones of the transportation problem. 

coefficient of a   j 
linear combination 

XnXj2« • .XinX21X22...X2n . . .XrnlXin2. . .Xmn 
ciici2,,,cincac22,,,c2n,,,cmicm2',,cmn 

variables 
minimize 

Ri 

R2 

Rm 

Kl 

1          K 
n 

1   . 

III...!                                                                      s         gi                   | 

1   1 ... 1                            :      ag 
•                                                         *                                            1 •                                            i 

1    1 ... 1     ■      am m              1 

1                   1                 ... 1                     "       bl              J 
1                  1                 ... 1               «      b 

'•       i 
1              ' ]              ' 1                •••  1     s      bn 

P11P12---PinP2lP22-"P2n---PmlPm2'--Pmn   "      d 

[case a 

case b 

case c                   | 

1                       ii                    -                  ,      f   --"      1 

1                        1                     '      f 

j  1    1                                                              '      f                1 
Table 1.    Detached Coefficient Form of Singularly 

Constrained Transportation Probleme 
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Our goal io to specify a oonputationally simple procedure for identifying a 

linear combination of the ordinary transportation constraints, if one exists, which 

can be subtracted fron the extra constraint to produce an inequality that is equi- 

valent to establishing a bound for a partial sun of variables associated with a 

single origin or destination.   Fran well known properties of the transportation 

matrix, if there exists a linear oonbination of the transportation constraints 

that has the desired form, then a linear oonbination can be found in which any 

particular transportation constraint receives a zero weight.    Ihus, we may arbi- 

trarily delete a node constraint when seeking such a linear conbination.   Having 

done this certain variables can be viewed as having only one entry in the coefficient 

matrix for purposes of finding the desired linear combination.    To exploit these 

facts in seeking a transformation of the singularly constrained transportation problem 

into an ordinary transportation problem, we arbitrarily emit the first origin con- 

straints.   Our principal observations are then contained in the following three cases. 

Case a.   Assune that the extra constraint is equivalent to a partial sun of 

variables in a sii»gle origin constraint q other than origin 1 (i.e., the equivalent 

extra constraint is of the fonn   l   x-,i=f for ScN as illustrated in Table 1). 

Having set R^ equal to 0, the unique values for all the destination constraint mul- 

tipliers can be determined using the equations R^+K^sp^-i* fhi-3 is possible by the 

assunption that the equivalent constraint involves variables in origin q^l (i.e., 

the coefficient on the variables x^., j=l,..., n in the equivalent constraint must 

equal 0).    By the same reasoning a unique origin multiplier can be found for every 

other origin except origin q.    In origin q not all of the equations R   + K. = p • 

can simultaneously be satisfied by a single value for I\,.    There will be two values, 

one that satisfies the equation for a subset SC N and another that satisfies that 

equation for the destinations in the subset N-S.    By setting R   equal to the 

value I^- + K: = pqj for jf,N-S a linear oonbination of the standard node constraints 

has been found which when subtracted riom the original extra constraint yields 

a restriction on the partial sum of variables in origin constraint q associated 

with the destinations in S. The equivalent constraint   I    (p^-R-KJ x .= 
j^s      4J    4    J      4J 

d- z     Rj^ -i     IGb^ can be reduced to an equivalent partial sum by dividing 
i^M jcN 

MMM>M-MM'^"—' ■•'■■- ■ i—inii         ^njmnn^ 
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through by (Pqj-Rq -  Kj) ginoe this expresaion has the same •alue for all jt.S. 

Case b.   Assume that the extra constraint is equivalent to a partial 

sum of variables in a single destination q (i.e. the constraint is of the form 

i   x,a= f for TCM ^s illustrated in Table 1). The appropriate linear 
icT     M 

combination for this case can be found in the same manner as in case a.   After 

the origin constraint inultiplier R]  is set equal to zero and the destination 

constraint multipliers are determined using the equations R^ + Kj = p^j  , the 

remaining Ri values can be found.    In every origin i that does not include 

variables in the equivalent partial sum (i.e. for ieM-T), there exists a 

unique value for R^ such that the constraints Rj + Kj = pjj will be satisfied 

simultaneously by a unique value for all j,;N.    For those origins icT that have 

a variable in common with the equivalent extra constraint, the equation Ri -r Kjs Pij 

will be satisfied by a unique value for all j ;* q.    Setting Ri, ieT equal 

to this unique value will provide the scalar multipliers for a linear com- 

bination of the node constraints which when subtracted from the original extra 

constraint yield an equivalent partial sum of variables in the single destination 

constraint   q associated with the origins in T.    The equivalent constraint 

I    (Pin- Ri - ^Q) Xia= d -    z   Ridi-   i   Kjbj can be reduced to an equivalent 
ieT       H M icM jf;N 

partial sum by dividing through by (Piq-Ri -Kq)      since this expression has 

the same value for all itT. 

Case c.    Assume the extra constraint is equivalent to a partial sum of 

variables in origin constraint 1  (i.e. the constraint is    i   x^ .•= f for ScN 
jeS     J 

as illustrated in Table 1).    Starting again with R^^ equal to zero, the Kj 

values for jeN are immediately determined.    Since the equivalent partial sum 

is assumed to be in origin 1, multipliers mcst be found to satisfy Ri +Kj = pij 
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for all 1 ana j such that i^l in order for these variables not to appear in the 

equivalent constraint.    However 9iven the current values for K^ unique values 

for Rj, 1 jM cannot be found, for if they could be then R^ + K,- = p^. would 

hold for ajl 1 and all j oontradicting the assumption.    TJ»us there must be two 

po'iSible values for each Rj, i / 1.   Set these R^ equal to the value that 

satisfies R^ + Kj * p^j for j(.N-S.    Thus, Ri + Kj/p^ for i t 1 and for jeS. 

Note, however, new values for K. can be found that satisfy R^ + K, = p.. for 

i / 1 and jcS,    Thus by changing the appropriate K. values after having 

determined values for all R^, one can find the linear combination of the 

node constraints which when subtracted from the extra constraint leaves the 

equivalent restriction i (p^-K.) xn= d - i R.AJ - t Kibi.Since(p1 .-Kj is 
jeS    ,J    J      IJ ieM 1  1   JtN J J J   J 

the same for all jVS then dividing through by this quantity will yield the 

equivalent partial sum. 

Based on the reasoning just presented we can describe a general procedure 

to effect the transformation as required in the three cases.    It is convenient 

to use a transportation tableau with the coefficients of the extra constraint 

placed in the cell corresponding to the appropriate variable.    This format is 

illustrated in Table 2.    Values for the R-j and K. multipliers are shown around 

the rim of the tableau and can be determined in a manner similar to that used 

to find values for dual evaluators for a basic solution to a transportation 

problem. 
K, K, 

(1 

Rm 

p,7fp n 12 

21 , r22 •   "   * 

p , ; P 
ml , rm2 

Pin 

2n 

mn 

al 

a2 

■'n 

Table 2.    Tableau Representation 
of an Extra Constraint 
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Our procedure for finding the appropriate linear oanbination of the 

oonatraints is: 

Step 1. Set R. equal to zero. 

Step 2. For all jcN set Kj equal to p^j. 

Step 3. Try to determine a unique value for R2 uaing the equations 

R2 + Kj = P2j for all jeN. 

a) If a unique value for R2 can be found set R2 equal to this 

value and proceed to step 4. 

b) If the equations are not satisfied by a unique value of R2 but 

all equations except q can be satisfied by a single value of R2, 

set R2 so that the R2 + Kq ^ P2q ^ inark cel1 (2,q)with a "star".How- 

ever, if this is not the case, and R- raust assume two distinct values to 

satisfy the equations for all j, set R2 equal to either of two 

values arbitrarily and "star" the cells for which R^+K^ P2-;' Proceed 

to step 4. 

c) If more than two values of R2 are required to satisfy all the 

equations, stop. The constraint is not equivalent to a partial son 

of variables in a single node constraint. 

Step 4. Continue determining values for the remaining R. as in step 2 except 

when R-  must assume two distinct values in order for the equations 

R. + K• = p^ to be satisfied for all j. In this case set R^ so 

that the starred cells in this row lie in the same columns as thoso 

starred in earlier rows. If this cannot IJH done, stop. Tho «.•onHtr-j inl 

is not equivalent to a partial sum of variables in a single node 

constraint. Also for any column r with starred cells check to see 

that Pjj.-Ri = Pto^k for &k where i and k are rows containing the 

starred cells. If this is not the case for all i^k, stop. Again 

the constraint is not equivalent to a partial sum of variables in a 

mmmm^mmmmmm^mmmmmmmmmmi^mm^mm^mm 
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sinyle node oonstralnt. 

Stop 5.   After all ft: liav» becüi detomincd, four cascn are rossible. 

i^    the stamsd evils occur only in a single row. 

ii)    the starred ceils occur in all cells in a suteet of the 

colunnF except for the cells in row 1. 

ill)    the starred cells occur only in a single oolumn. 

iv)    the starred cells occur in some cells in a subset of the 

colimns but not in row 1 and not in acme other rcM. 

In case i the starred cells indicate the variables included in the equi- 

valent partial sum of variables.    For these starred cells the coefficient on 

these variables in an eriuivalent constraint is p^.- R. -K..    After forming the 

linear conbination from the extra constraint only those terms will remain.   Since 

p^ -Rj^ -K. will be tie same for all starred cells., the equivalent partial sum 

can be obtained by dividing through by the coefficient on the variables. 

In case ii the K- values Tor the columns containing starred cells can be 

changed so that the aquation R^* K. = pi. holds for the starred cells.   The effect 

is vo "erase" the stars from these cells and place than in the cells in row 1 

in these oolunns.   This is .ow the same as case i. 

In case iii the starred cells indicate the variables in a single destination 

oonstralnt tlat oanpriso an equivalent constraint.    Since p^ ~Ri - K. will be 

the same for all starred cells t.he equivalent partial sun can be obtained by 

dividing through by the coefficient of the variables. 

In case iv the constraint is not equivalent to a partial sun of variables 

in a single origin or destination constraint. 

For cases i, ii, and iii we have found the coefficients of the variables 

in an equivalent constraint.   The new right-hand side value can be found by 

subtracting     j   R^ + I   Kih* fron the original right-hand side. 
ieM jeN 
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We can summarize our results to this ix>int in tlie following tlieoran. 

Theorem; If an extra constraint is ajuivalent by a linear transformation 

to a partial sum of variables in a single node constraint then the stated pro- 

cedure finds the equivalent partial sum. 

Proof; The hypothesis allows us to assert that the equivalence can be 

determinea by a linear ccmbination of the node constraints of the transpor- 

tation problem.   The ranainder of the proof is contained in cases a^, and c above. 

A four origin, five destination constrained transportation problem is shown 

in Table 3 with the coefficients of the extra constraint indicated in the cells 

corresponding to the appropriate variables   The associated supply and derand 

values are shewn along the rim of the table.   Assume that the extra constraint 

is an "equality" constraint with a right-hand side value of 84. 

Supply 
10 

15 

10 

10 
ii       i 1  

Oemarei       8     7     9     6   15 

Table 3 

By applying the procedure derjeribed above, the following R^ and IC mul- 

tipliers are obtained. 

In step 1 R^ is set equal to zero. 

In step 2 the Ki multipliers are set equal to the following values 

Ki = 0, K2 = 1, K3 = 0, K4 = 4, K5 = -5 

In step  3 a unique value for R- cannot be found to satisfy R2 + Ks = P2-\ 

for all j. The value 6 satisfies chat equation for P2^ and P22 and the value 

4 satisfies that equation for P23» P24 and P25. Arbitrarily set R2 equal to 

6 and star the cells p_^. p_., and pnr. r23 r2A 25 

0 1    0 4 -5 

6 7   i 4 8 -1 

5 6      5 9 0 

-1 0j-l 3 -6 

mtmmmm tmammm**^!*. 
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As reqiixed by step 4 R3 is set equal to 5 because this value satisfies 

the equation R3 + K^ « P3;. for all j. Similarly a value of R j" -1 satisfies 

«4 <■ Kj ■ P4j for all j. The results of the procedure to this point are shown 

in Table 4. 

Kx » 0  K2 « 1  K3 = 0  K4 » 4  K5 = -5 

Rl - 0 

R2 * 6 

R3» 5 

R4 —1 

Demand 

0 1 0 4 -5           | 

6 7 4* 8* -1* 

5 6 5 9 0 

-1 0 -1 3 -6 

Supply 

10 

15 

10 

10 

8 15 

Table 4 

To ocnplete the transformation next coflpute the values of  (p^ -R^ -K:) 

for the starred cells, check f-hat they are equal, and obtain the coefficients 

for the variables in an equivalent constraint.    In particular the left-hand 

side of the equivalent constraint is -2x23 + -2x24 + -2x25.   The new right~ 

4 5 
hand side value is found by the fconula (+84) -   z   Kai-   l   ich: = 84 - (130)- 

i-1 j=l   J J 

(-44) =-2.   Dividing through by -2, we obtain the equivalent partial sum 

>{234x244*25= 1*   'ana' ty using the procedure described above we have found 

a partial sun of variables in a single row equivalent to the original extra 

constraint.   The original transportation problem can be enlarged by one 

source and one destination in the manner suggested by Wagner [9] ,and an optimal 

solution to the original problan can be found using the transportation algorithm, 

3.0   BCIBJSICMS 

In the developnent of the procedure for transforming extra constraints and 

in the example the original extra constraint was assumed to be an "equality" 

type.    It should be clear that the same transformation can be made for both 

U^^B^M _-J. 



-10- 

"less than or equal" and "greater than or equal" constraints. If there are 

several extra oonstraints then the procedure can be applied to each one separ- 

ately to obtain an equivalent partial sun for each extra constraint. Wagner 

(9) has shown that if these partial sums involve disjoint sets of variables 

and if the sets are nested in the same node oonstraints then the problem can 

be transformed into an enlarged transportation problem. 

4.0 APPLICATIONS 

Many models have the structure of a transportation problem with additional 

restrictions. The extra oonstraints may represent secondary objectives or 

restrictions that are not reflected in trie standard node constraints. To 

illustrate a typical example of this class of problems, consider the trans- 

portation model where warehouses supply markets and the objective is the stan- 

dard one of finding a shipping pattern that will minimize the total shipping 

cost. Suppose additionally that the products shipped are of a fragile nature 

and if they are sent via particular routes each item mast be specially pack- 

aged to prevent losses in shipping. Table 6 shows the packaging time in 

minutes per unit required to prepare a unit for shipment on the various routes. 

Suppose that we wish to limit the average packaging time per unit to at most 

2-1/2 minutes per unit (i.e., for the 60 units that must be shipped, the total 

packaging time must not exceed 150 minutes). Using our procedure a linear 

oanbination of the node constraints of the transportation problems can be 

found which vixen subtracted fron the original extra constraint yields an 

equivalent partial sun of variables X22+ ^24 - ^ ^ n0^e constraint 

multipliers for the linear oanbination are indicated in table 6. Thus the 

aMMMjaBait 
■ '■ 
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Ri = 0 

R2 = 1 

R3 = 3 

R4 = 2 

Demand 

^ = 0  K2 = 1 K3 = 0 K4 = 2  Kg - 1 Supply 

1    0 
1 0 2 1 10 

i i 3* 1 4* 2 |          20 

1 3 4 3 5 4 20 

1 2 
3 2 4 3 10 

15 10 5 5 25 60 

Table 6 

2-1/2 minute average packaging time restriction can only be satisfied if the 

total number of units shipped along routes (2,2) and (2,4) is less than or 

equal to 5. The transportation problern can be transformed to include this 

restriction directly,and thus the original oonstrained transportation problem 

can be solved as a transportation problem witn one additional origin and one 

additional destination. 

Hü mmmmm '"*'''■"-"'-"" »1. v.».'—»-^  ■. 
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